
django-notify Documentation
Release 0.1.0

Pete Wicken

Jun 27, 2017

Contents:

1 Ideas 3

2 Concepts 5
2.1 Custom defined dynamic routing keys . 5

3 Indices and tables 7

i

ii

django-notify Documentation, Release 0.1.0

django-notify is a Django plug-in for automatically publishing AMQP events when models are modified.

Adding a notification event is as simple as adding an @notify decorator to your model class. By default, the
decorator will publish an event for any create, read, update and delete (CRUD) action on your model.

@notify
class MyModel(models.Model):

pass

This behaviour can be modified to selectively act upon any combination of CRUD events:

@notify(when='CD')
class MyModel(models.Model):

pass

To specify which fields should be included in the AMQP body; add it to fields:

@notify(when='CRUD', fields=('pk', 'name'))
class MyModel(models.Model):

name = models.CharField()

That’s it! For further configuration options such as generating custom routing keys for your events, see the :doc:
concepts page.

Contents: 1

django-notify Documentation, Release 0.1.0

2 Contents:

CHAPTER 1

Ideas

A place for future project ideas.

3

django-notify Documentation, Release 0.1.0

4 Chapter 1. Ideas

CHAPTER 2

Concepts

Custom defined dynamic routing keys

In order to get around redefining routing keys for each model every time you call @notify, or having one static global
one used for everything, we have settings options to allow you to dynamically set them using basic string formatting.

For example; you can set this as your routing key format definition:

DJANGO_NOTIFY_ROUTING_KEY = 'model.{}.{}.{}'

Which is saying, always start the routing key with the string literal model and then delimit three additional bits of
data with ..

To define the ‘additional bits of data’, we can use the following settings variable which will be used to format the
routing key. The order of the items in the tuple dictate the order of interpolation:

DJANGO_NOTIFY_ROUTING_KEY_ARGS = ('name', 'author', 'pk')

The strings defined in here are class attributes of the class - So in Django that means model fields. Here is an example
of what this would generate:

model.my_book_name.joe_bloggs.123

This is easy, but most people will want a little more structure and context for their routing keys. Introducing, routing
key formatters! Out of the box, django-notify provides you with some pretty simple but useful formatters. Here is an
example of using one:

from django_notify import formatters

DJANGO_NOTIFY_ROUTING_KEY_ARGS = (formatters.EventType, 'name', 'pk')

This will format into your routing key a contextual model event type:

model.create.my_book_name.123

Cool, but we can do better. You can define your own key formatter by inheriting from the BaseFormatter.

5

django-notify Documentation, Release 0.1.0

from django_notify import formatters

class ModificationTime(formatters.BaseFormatter):

def __init__(self, **kwargs):
super(ModificationTime, self).__init__(kwargs)

def formatted_result(self):
return str(kwargs['model']['modified_at'])

Another thing to note is, as the strings we pass into our routing key arguments are just class attributes, we can sneak in
some arguments that access more fundamental object fields. For example, let’s say I want the actual model class name
in the routing key? Simple python always wins.

DJANGO_NOTIFY_ROUTING_KEY_ARGS = (formatters.EventType, '__class__.__name__', 'pk')

model.create.MyModel.123

6 Chapter 2. Concepts

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

7

	Ideas
	Concepts
	Custom defined dynamic routing keys

	Indices and tables

